Search results for "quantum walks"

showing 9 items of 9 documents

Quantum walk on a cylinder

2016

We consider the 2D alternate quantum walk on a cylinder. We concentrate on the study of the motion along the open dimension, in the spirit of looking at the closed coordinate as a small or "hidden" extra dimension. If one starts from localized initial conditions on the lattice, the dynamics of the quantum walk that is obtained after tracing out the small dimension shows the contribution of several components, which can be understood from the study of the dispersion relations for this problem. In fact, these components originate from the contribution of the possible values of the quasi-momentum in the closed dimension. In the continuous space-time limit, the different components manifest as …

High Energy Physics - Theorymass generationQuantum simulatorFOS: Physical sciencesQuantum entanglementGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum Cosmology010305 fluids & plasmassymbols.namesake[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]0103 physical sciencesquantum walksQuantum walkBoundary value problem010306 general physicsEntropy (arrow of time)ComputingMilieux_MISCELLANEOUSquantum simulationPhysicsQuantum Physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]Mass generationExtra dimensionsClassical mechanicsHigh Energy Physics - Theory (hep-th)Dirac equationsymbolsQuantum Physics (quant-ph)
researchProduct

Readout of quantum information spreading using a disordered quantum walk

2021

We design a quantum probing protocol using quantum walks to investigate the quantum information spreading pattern. We employ quantum Fisher information as a figure of merit to quantify extractable information about an unknown parameter encoded within the quantum walk evolution. Although the approach is universal, we focus on the coherent static and dynamic disorder to investigate anomalous and classical transport as well as Anderson localization. We provide a feasible experimental strategy to implement, in principle, the quantum probing protocol based on the quantum Fisher information using a Mach–Zehnder-like interferometric setup. Our results show that a quantum walk can be considered as …

PhysicsQuantum WalkQuantum networkAnderson localizationStatistical and Nonlinear Physicsquantum walks quantum metrology quantum interference disordered dynamicsQuantum Fisher informationSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and Opticslaw.inventionlawQuantum metrologyFigure of meritQuantum InformationQuantum walkStatistical physicsQuantum informationQuantum MetrologyQuantumBose–Einstein condensateJournal of the Optical Society of America B
researchProduct

Quadratic speedup for finding marked vertices by quantum walks

2020

A quantum walk algorithm can detect the presence of a marked vertex on a graph quadratically faster than the corresponding random walk algorithm (Szegedy, FOCS 2004). However, quantum algorithms that actually find a marked element quadratically faster than a classical random walk were only known for the special case when the marked set consists of just a single vertex, or in the case of some specific graphs. We present a new quantum algorithm for finding a marked vertex in any graph, with any set of marked vertices, that is (up to a log factor) quadratically faster than the corresponding classical random walk.

FOS: Computer and information sciencesQuadratic growthQuantum PhysicsQuantum algorithmsSpeedupMarkov chainMarkov chainsProbability (math.PR)FOS: Physical sciencesRandom walkVertex (geometry)CombinatoricsQuadratic equationSearch by random walkQuantum searchComputer Science - Data Structures and AlgorithmsFOS: MathematicsData Structures and Algorithms (cs.DS)Quantum walkQuantum algorithmQuantum Physics (quant-ph)Mathematics - ProbabilityMathematicsQuantum walks
researchProduct

Electromagnetic lattice gauge invariance in two-dimensional discrete-time quantum walks

2018

International audience; Gauge invariance is one of the more important concepts in physics. We discuss this concept in connection with the unitary evolution of discrete-time quantum walks in one and two spatial dimensions, when they include the interaction with synthetic, external electromagnetic fields. One introduces this interaction as additional phases that play the role of gauge fields. Here, we present a way to incorporate those phases, which differs from previous works. Our proposal allows the discrete derivatives, that appear under a gauge transformation, to treat time and space on the same footing, in a way which is similar to standard lattice gauge theories. By considering two step…

Quantum informationHigh Energy Physics::Latticecurrent: conservation lawLattice field theoryFOS: Physical sciencescurrent: density01 natural sciences010305 fluids & plasmasrandom walksymbols.namesakeTheoretical physics[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]electromagnetic field0103 physical sciencesunitarityinvariance: gaugeQuantum walkDirac equationcontinuum limitGauge theorydimension: 2010306 general physicsConserved currentComputingMilieux_MISCELLANEOUSQuantum walksPhysicsQuantum PhysicsSpacetimeUnitaritylattice field theoryInvariant (physics)[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]electromagneticDirac equationsymbolsgauge field theoryQuantum simulationQuantum Physics (quant-ph)transformation: gaugeLattice gauge theoriesPhysical Review A
researchProduct

Experimental Engineering of Arbitrary Qudit States with Discrete-Time Quantum Walks

2019

The capability to generate and manipulate quantum states in high-dimensional Hilbert spaces is a crucial step for the development of quantum technologies, from quantum communication to quantum computation. One-dimensional quantum walk dynamics represents a valid tool in the task of engineering arbitrary quantum states. Here we affirm such potential in a linear-optics platform that realizes discrete-time quantum walks in the orbital angular momentum degree of freedom of photons. Different classes of relevant qudit states in a six-dimensional space are prepared and measured, confirming the feasibility of the protocol. Our results represent a further investigation of quantum walk dynamics in p…

qudit statesPhotonLightComputer scienceFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesSettore FIS/03 - Fisica Della MateriaDegrees of freedom (mechanics)symbols.namesakeQuantum statequantum information0103 physical sciencesquantum walksphotonsQuantum walkStatistical physics010306 general physicsQuantum information scienceQuantumQuantum computerQuantum PhysicsQuantum opticsHilbert spacequatum walks; qudit states; photonsQuantum computersQuantum technologysymbolsQuantum Physics (quant-ph)quatum walks
researchProduct

Quantum state engineering using one-dimensional discrete-time quantum walks

2017

Quantum state preparation in high-dimensional systems is an essential requirement for many quantum-technology applications. The engineering of an arbitrary quantum state is, however, typically strongly dependent on the experimental platform chosen for implementation, and a general framework is still missing. Here we show that coined quantum walks on a line, which represent a framework general enough to encompass a variety of different platforms, can be used for quantum state engineering of arbitrary superpositions of the walker's sites. We achieve this goal by identifying a set of conditions that fully characterize the reachable states in the space comprising walker and coin, and providing …

Angular momentumComputer scienceQuantum dynamicsQuantum technologiesFOS: Physical sciencesQuantum simulator02 engineering and technologyTopologySpace (mathematics)01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasSet (abstract data type)Open quantum systemQuantum statequantum informationQuantum mechanics0103 physical sciencesExperimental platformquantum walksQuantum walk010306 general physicsPhysicsQuantum networkQuantum PhysicsHigh-dimensional systemsQuantum state preparationbusiness.industryOrbital angular momentumQuantum-state engineeringArbitrary superpositionOne-way quantum computer021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsArbitrary quantum stateQuantum technologyDiscrete time and continuous timeLine (geometry)PhotonicsQuantum Physics (quant-ph)0210 nano-technologybusiness
researchProduct

Entanglement transfer, accumulation and retrieval via quantum-walk-based qubit-qudit dynamics

2020

The generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies. Achieving such non-classical high-dimensional resources will potentially unlock enhanced capabilities for quantum cryptography, communication and computation. We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based {\it transfer \& accumulate} mechanism involving coin and walker degrees of freedom. The choice of investigating quantum walks is motivated by their generality and versatility, complemented by their successful implementation in several physical systems. Hence, given t…

Physical systemGeneral Physics and AstronomyFOS: Physical sciencesQuantum entanglementPhysics and Astronomy(all)Topology01 natural sciences010305 fluids & plasmasquantum information/dk/atira/pure/subjectarea/asjc/31000103 physical sciencesquantum walksQuantum walkentanglement accumulationQuantum information010306 general physicsQuantumPhysicsQuantum Physicsentanglement accumulation; entanglement transfer; high-dimensional entanglement; quantum walksTheoryofComputation_GENERALentanglement transferQuantum technologyQuantum cryptographyQubitentanglement transfer; entanglement accumulation; high-dimensional entanglement; quantum walksQuantum Physics (quant-ph)entanglementhigh-dimensional entanglement
researchProduct

Quantum walks: background geometry and gauge invariance

2019

Ciertos tipos de problemas no pueden resolverse usando los actuales ordenadores clásicos. Una forma de encontrar una solución, es mediante el uso de ordenadores cuánticos. Sin embargo, construir un ordenador cuántico es realmente complicado actualmente, debido a las limitaciones tecnológicas. Mientras tanto, los simuladores cuánticos han sido capaces de resolver algunos de estos problemas, ya que los simuladores cuánticos son más accesibles experimentalmente. Las llamadas caminatas cuánticas, en su versión discreta, son una herramienta muy útil para simular ciertos sistemas físicos. En el límite al continuo, se puede obtener una serie de ecuaciones diferenciales, particularmente, la ecuació…

simulación cuánticadiscrete gauge invariance:FÍSICA [UNESCO]UNESCO::FÍSICAquantum walksquantum simulation
researchProduct

Trapping of Continuous-Time Quantum walks on Erdos-Renyi graphs

2011

We consider the coherent exciton transport, modeled by continuous-time quantum walks, on Erd\"{o}s-R\'{e}ny graphs in the presence of a random distribution of traps. The role of trap concentration and of the substrate dilution is deepened showing that, at long times and for intermediate degree of dilution, the survival probability typically decays exponentially with a (average) decay rate which depends non monotonically on the graph connectivity; when the degree of dilution is either very low or very high, stationary states, not affected by traps, get more likely giving rise to a survival probability decaying to a finite value. Both these features constitute a qualitative difference with re…

Statistics and ProbabilityRandom graphQuantum PhysicsDegree (graph theory)FOS: Physical sciencesProbability and statisticsCondensed Matter PhysicsErdős–Rényi modelDistribution (mathematics)Quantum mechanicsQuantum walkQuantum Physics (quant-ph)ConnectivityStationary stateQuantum walks; Random graphs; Trapping; Statistics and Probability; Condensed Matter PhysicsMathematics
researchProduct