Search results for "quantum walks"
showing 9 items of 9 documents
Quantum walk on a cylinder
2016
We consider the 2D alternate quantum walk on a cylinder. We concentrate on the study of the motion along the open dimension, in the spirit of looking at the closed coordinate as a small or "hidden" extra dimension. If one starts from localized initial conditions on the lattice, the dynamics of the quantum walk that is obtained after tracing out the small dimension shows the contribution of several components, which can be understood from the study of the dispersion relations for this problem. In fact, these components originate from the contribution of the possible values of the quasi-momentum in the closed dimension. In the continuous space-time limit, the different components manifest as …
Readout of quantum information spreading using a disordered quantum walk
2021
We design a quantum probing protocol using quantum walks to investigate the quantum information spreading pattern. We employ quantum Fisher information as a figure of merit to quantify extractable information about an unknown parameter encoded within the quantum walk evolution. Although the approach is universal, we focus on the coherent static and dynamic disorder to investigate anomalous and classical transport as well as Anderson localization. We provide a feasible experimental strategy to implement, in principle, the quantum probing protocol based on the quantum Fisher information using a Mach–Zehnder-like interferometric setup. Our results show that a quantum walk can be considered as …
Quadratic speedup for finding marked vertices by quantum walks
2020
A quantum walk algorithm can detect the presence of a marked vertex on a graph quadratically faster than the corresponding random walk algorithm (Szegedy, FOCS 2004). However, quantum algorithms that actually find a marked element quadratically faster than a classical random walk were only known for the special case when the marked set consists of just a single vertex, or in the case of some specific graphs. We present a new quantum algorithm for finding a marked vertex in any graph, with any set of marked vertices, that is (up to a log factor) quadratically faster than the corresponding classical random walk.
Electromagnetic lattice gauge invariance in two-dimensional discrete-time quantum walks
2018
International audience; Gauge invariance is one of the more important concepts in physics. We discuss this concept in connection with the unitary evolution of discrete-time quantum walks in one and two spatial dimensions, when they include the interaction with synthetic, external electromagnetic fields. One introduces this interaction as additional phases that play the role of gauge fields. Here, we present a way to incorporate those phases, which differs from previous works. Our proposal allows the discrete derivatives, that appear under a gauge transformation, to treat time and space on the same footing, in a way which is similar to standard lattice gauge theories. By considering two step…
Experimental Engineering of Arbitrary Qudit States with Discrete-Time Quantum Walks
2019
The capability to generate and manipulate quantum states in high-dimensional Hilbert spaces is a crucial step for the development of quantum technologies, from quantum communication to quantum computation. One-dimensional quantum walk dynamics represents a valid tool in the task of engineering arbitrary quantum states. Here we affirm such potential in a linear-optics platform that realizes discrete-time quantum walks in the orbital angular momentum degree of freedom of photons. Different classes of relevant qudit states in a six-dimensional space are prepared and measured, confirming the feasibility of the protocol. Our results represent a further investigation of quantum walk dynamics in p…
Quantum state engineering using one-dimensional discrete-time quantum walks
2017
Quantum state preparation in high-dimensional systems is an essential requirement for many quantum-technology applications. The engineering of an arbitrary quantum state is, however, typically strongly dependent on the experimental platform chosen for implementation, and a general framework is still missing. Here we show that coined quantum walks on a line, which represent a framework general enough to encompass a variety of different platforms, can be used for quantum state engineering of arbitrary superpositions of the walker's sites. We achieve this goal by identifying a set of conditions that fully characterize the reachable states in the space comprising walker and coin, and providing …
Entanglement transfer, accumulation and retrieval via quantum-walk-based qubit-qudit dynamics
2020
The generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies. Achieving such non-classical high-dimensional resources will potentially unlock enhanced capabilities for quantum cryptography, communication and computation. We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based {\it transfer \& accumulate} mechanism involving coin and walker degrees of freedom. The choice of investigating quantum walks is motivated by their generality and versatility, complemented by their successful implementation in several physical systems. Hence, given t…
Quantum walks: background geometry and gauge invariance
2019
Ciertos tipos de problemas no pueden resolverse usando los actuales ordenadores clásicos. Una forma de encontrar una solución, es mediante el uso de ordenadores cuánticos. Sin embargo, construir un ordenador cuántico es realmente complicado actualmente, debido a las limitaciones tecnológicas. Mientras tanto, los simuladores cuánticos han sido capaces de resolver algunos de estos problemas, ya que los simuladores cuánticos son más accesibles experimentalmente. Las llamadas caminatas cuánticas, en su versión discreta, son una herramienta muy útil para simular ciertos sistemas físicos. En el límite al continuo, se puede obtener una serie de ecuaciones diferenciales, particularmente, la ecuació…
Trapping of Continuous-Time Quantum walks on Erdos-Renyi graphs
2011
We consider the coherent exciton transport, modeled by continuous-time quantum walks, on Erd\"{o}s-R\'{e}ny graphs in the presence of a random distribution of traps. The role of trap concentration and of the substrate dilution is deepened showing that, at long times and for intermediate degree of dilution, the survival probability typically decays exponentially with a (average) decay rate which depends non monotonically on the graph connectivity; when the degree of dilution is either very low or very high, stationary states, not affected by traps, get more likely giving rise to a survival probability decaying to a finite value. Both these features constitute a qualitative difference with re…